
Audit
Mintbase

Presented by:

OtterSec contact@osec.io

JamesWang james.wang@osec.io

Robert Chen r@osec.io

mailto:contact@osec.io
mailto:james.wang@osec.io
mailto:r@osec.io

Contents
01 Executive Summary 2

Overview . 2
Key Findings . 2

02 Scope 3

03 Findings 4

04 Vulnerabilities 5
OS-MTB-ADV-00 [crit] | NFT Not Transferred In Transfer With Call 7
OS-MTB-ADV-01 [crit] | NFT Not Returned On Transfer Failure 8
OS-MTB-ADV-02 [crit] | MintbaseStore Funds Drainage Through Revoke 9
OS-MTB-ADV-03 [high] | Kick Token Does Not Respect Listing Lock 10
OS-MTB-ADV-04 [high] | Remove Offer Does Not Respect Offer Non-Mutability 12
OS-MTB-ADV-05 [high] | Potential Loss Of NFT Due To Unaccounted Fee 14
OS-MTB-ADV-06 [med] | Excessive Approval Renders Functions Unavailable 16
OS-MTB-ADV-07 [med] | Minter Privilege Not Revocable In MintbaseStore 17
OS-MTB-ADV-08 [med] | NFT State Not Restored On Transfer Failure 18
OS-MTB-ADV-09 [med] | Storage Fee Uncollected When Listing NFTs 20
OS-MTB-ADV-10 [med] | Updating Token Owner Does Not Charge Caller 22

05 General Findings 23
OS-MTB-SUG-00 | Avoid Redundant State Checks In Init Functions 24
OS-MTB-SUG-01 | Contradictory Documentation And Code . 25
OS-MTB-SUG-02 | Avoid Manual Calculation Of Storage Fees . 28

Appendices

A Vulnerability Rating Scale 29

B Procedure 30

© 2023 Otter Audits LLC. All Rights Reserved. 1 / 30

01 | Executive Summary

Overview
Mintbase engaged OtterSec to perform an assessment of the mb-contract programs. This assess-
ment was conducted between March 20th and March 29th, 2023. For more information on our auditing
methodology, see Appendix B.

Key Findings
Over the course of this audit engagement, we produced 14 findings total.

In particular, we identified an issue with an incorrect NFT ownership management during transfers (OS-
MTB-ADV-00, OS-MTB-ADV-01), as well as the possibility of native asset draining through storage fee refund
(OS-MTB-ADV-02), and a potential user loss of NFTs or funds due to asynchronous receipt processing
(OS-MTB-ADV-03, OS-MTB-ADV-04).

We alsomade recommendations around removing redundant code to reduce gas (OS-MTB-SUG-00), fixing
documentation and implementation mismatches (OS-MTB-SUG-01), and best coding practices regarding
storage fee management (OS-MTB-SUG-02).

© 2023 Otter Audits LLC. All Rights Reserved. 2 / 30

02 | Scope
The source code was delivered to us in a git repository at github.com/Mintbase/mb-contracts. This audit
was performed against commit aedb2c4.

A brief description of the programs is as follows.

Name Description

mb-factory Factory contract responsible for newmb-store deployments.
mb-store NFT implementation by Mintbase.
mb-legacy-market Old implementation of NFTmarket that only allows trading between NFTs and

native assets. Supports simple sales and rolling auctions.
mb-interop-market New implementation of NFTmarket that supports both trading between NFTs

and FTs and between NFTs and native assets while only supporting simple sales.

© 2023 Otter Audits LLC. All Rights Reserved. 3 / 30

https://github.com/Mintbase/mb-contracts
https://github.com/Mintbase/mb-contracts/commit/aedb2c4271864f126d1190711a0c9eb4d7a842b3

03 | Findings
Overall, we reported 14 findings.

We split the findings into vulnerabilities and general findings. Vulnerabilities have an immediate impact
and should be remediated as soon as possible. General findings don’t have an immediate impact but will
help mitigate future vulnerabilities.

Severity Count

Critical 3
High 3

Medium 5
Low 0

Informational 3

© 2023 Otter Audits LLC. All Rights Reserved. 4 / 30

04 | Vulnerabilities
Here, we present a technical analysis of the vulnerabilities we identified during our audit. These vulnera-
bilities have immediate security implications, and we recommend remediation as soon as possible.

Rating criteria can be found in Appendix A.

ID Severity Status Description

OS-MTB-ADV-00 Critical Resolved nft_transfer_call does not assign the NFT to the re-
ceiver.

OS-MTB-ADV-01 Critical Resolved The MintbaseStore does not return NFTs to the
original owner in nft_transfer_call upon
nft_on_transfer failures.

OS-MTB-ADV-02 Critical Resolved nft_revoke incorrectly refunds storage fees to the caller.

OS-MTB-ADV-03 High Resolved kick_token does not respect token listing locks andmay
result in a loss of user andmarket funds.

OS-MTB-ADV-04 High Resolved remove_offer in the interopmarket may remove listing
with offers, leading to a potential loss of user funds.

OS-MTB-ADV-05 High Resolved nft_resolve_payout_ft does not account for fees
during ft_transfer andmay result in a user loss of NFTs.

OS-MTB-ADV-06 Medium Resolved nft_approvemaybe abused to inflate gas costs of certain
MintbaseStore functions and render those unavailable.

OS-MTB-ADV-07 Medium Resolved MintbaseStore will not be able to revoke minter privi-
leges due to the unpayable withdraw_minter function.

OS-MTB-ADV-08 Medium Resolved NFT approvals and split_owners are not properly re-
stored on transfer failures.

© 2023 Otter Audits LLC. All Rights Reserved. 5 / 30

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-09 Medium Resolved Storage fees for NFT listings in the marketplace are not col-
lected from the caller, allowing the lock of legacy market
funds.

OS-MTB-ADV-10 Medium Resolved MintbaseStore does not charge callers for potential stor-
age fees, allowing attackers to lock all funds.

© 2023 Otter Audits LLC. All Rights Reserved. 6 / 30

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-00 [crit] | NFT Not Transferred In Transfer With Call

Description

NEP-171 specifies that nft_transfer_call is required to transfer ownership of token_id NFTs
from previous_owner_id to receiver_id. However, the MintbaseStore does not follow NEP-
171’s specifications and delays the NFT transfer until the callback function nft_resolve_transfer.

This results in confusion within calls to nft_on_transfer and potentially leads to a loss of NFTs for
the receiver.

Remediation

Transfer NFTs to receiver before locking the token.

mb-store/src/core.rs DIFF

/// Transfer-and-call function as specified by [NEP-171](https://nomicon.io/Standards/Tokens/NonFungibleToken/Core).
#[payable]
pub fn nft_transfer_call(

&mut self,
receiver_id: AccountId,
token_id: U64,
approval_id: Option<u64>,
msg: String,

) -> Promise {
assert_one_yocto();
let token_idu64 = token_id.into();
let mut token = self.nft_token_internal(token_idu64);
let pred = env::predecessor_account_id();
assert_token_unloaned!(token);
assert_token_owned_or_approved!(token, &pred, approval_id);
// prevent race condition, temporarily lock-replace owner
let owner_id = AccountId::new_unchecked(token.owner_id.to_string());

+ self.transfer_internal(&mut token, receiver_id.clone(), true);
+ log_nft_transfer(
+ &receiver_id,
+ token.id,
+ &None,
+ owner_id.to_string(),
+);

self.lock_token(&mut token);

ext_nft_on_transfer::ext(receiver_id.clone())
.with_static_gas(gas::NFT_TRANSFER_CALL)
.nft_on_transfer(pred, owner_id.clone(), token_id, msg)
.then(

store_self::ext(env::current_account_id())
.with_static_gas(gas::NFT_TRANSFER_CALL)
.nft_resolve_transfer(

owner_id,
receiver_id,
token_id.0.to_string(),
None,

),
)

}

Patch

Resolved in 3563e5e and 89f1661.

© 2023 Otter Audits LLC. All Rights Reserved. 7 / 30

https://github.com/Mintbase/mb-contracts/commit/3563e5e8fb4f40389fd45d399a274e9c30056b85
https://github.com/Mintbase/mb-contracts/commit/89f1661ef54db74fef1dbcc8def03cc2e34be4d7

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-01 [crit] | NFT Not Returned On Transfer Failure

Description

nft_resolve_transfer is a callback function responsible for handling state rollback upon failure in
nft_on_transfer or nft_transfer_call. A crucial aspect in rolling back states is to return NFTs
to its original_owner.

However, nft_resolve_transfer calls transfer_internalwith an incorrect recipient and fails
to return the NFT back to the original owner properly.

mb-store/src/core.rs RUST

#[private]
pub fn nft_resolve_transfer(

...
) -> bool {

...
if !must_revert {

true
} else {

self.transfer_internal(&mut token, receiver_id.clone(), true);
log_nft_transfer(

&receiver_id,
token_id_u64,
&None,
owner_id.to_string(),

);
false

}
}

Remediation

Transfer NFTs to owner_id instead of receiver_id.

mb-store/src/core.rs DIFF

if !must_revert {
true

} else {
- self.transfer_internal(&mut token, receiver_id.clone(), true);
+ self.transfer_internal(&mut token, owner_id.clone(), true);

log_nft_transfer(
- &receiver_id,
+ &owner_id,

token_id_u64,
&None,

- owner_id.to_string(),
+ receiver_id.to_string(),

);
false

}

Patch

Resolved in 6a69314 and 23ecd80.

© 2023 Otter Audits LLC. All Rights Reserved. 8 / 30

https://github.com/Mintbase/mb-contracts/commit/6a69314d60e3bb7d0532c173aa85c65b55e044e3
https://github.com/Mintbase/mb-contracts/commit/23ecd80b930efe87374982f7d1adffd18ca6cb83

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-02 [crit] | MintbaseStore Funds Drainage Through Revoke

Description

Upon approval revokes, AccountIds are removed from token.approval and reduce storage usage.
Then, MintbaseStore attempts to refund the user with the storage fees previously deposited when
calling nft_approve.

However, since the highlighted transfer is called even when a revoked approval does not exist, it is
possible for attackers to repeatedly call the function and steal self.storage_costs.common one
transaction at a time until the MintbaseStore is completely drained of funds.

mb-store/src/approval.rs RUST

pub fn nft_revoke(
&mut self,
token_id: U64,
account_id: AccountId,

) -> Promise {
...
if token.approvals.remove(&account_id).is_some() {

...
}

Promise::new(env::predecessor_account_id())
.transfer(self.storage_costs.common)

}

Remediation

Move transfer inside the if block, and only refund if approval to revoke exists.

mb-store/src/approval.rs DIFF

pub fn nft_revoke(
&mut self,
token_id: U64,
account_id: AccountId,

-) -> Promise {
+) -> PromiseOrValue(()) {

...
if token.approvals.remove(&account_id).is_some() {

self.tokens.insert(&token_idu64, &token);
log_revoke(token_idu64, &account_id);

+ PromiseOrValue::Promise(
+ Promise::new(env::predecessor_account_id())
+ .transfer(self.storage_costs.common)
+)
+ } else {
+ PromiseOrValue::Value(())

}
-
- Promise::new(env::predecessor_account_id())
- .transfer(self.storage_costs.common)

}

Patch

Resolved in cdedb98.

© 2023 Otter Audits LLC. All Rights Reserved. 9 / 30

https://github.com/Mintbase/mb-contracts/commit/cdedb98533d0963eda8dd0e4ae1818c59bb70c11

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-03 [high] | Kick Token Does Not Respect Listing Lock

Description

The legacymarketplace locks the tokenwhen an offer is accepted, and no actions should be able to tamper
with the token state before the offer is properly processed.

mb-legacy-market/src/offer.rs RUST

fn help_transfer(&mut self, token_key: &TokenKey, mut token: TokenListing) {
token.locked = true;
self.listings.insert(token_key, &token);

let price = token.current_offer.as_ref().unwrap().price;
let market_keeps = self.take.multiply_balance(price);
let others_keep = price - market_keeps;
let receiver_id = AccountId::try_from(

token.current_offer.as_ref().unwrap().from.to_string(),
)
.unwrap();
self.ext_nft_transfer_payout(

receiver_id,
token_key,
token.approval_id,
others_keep,

)
.then(

interfaces::ext_old_market::ext(env::current_account_id())
.with_attached_deposit(NO_DEPOSIT)
.with_static_gas(gas::PAYOUT_RESOLVE)
.resolve_nft_payout(

token_key.to_string(),
token,
others_keep.into(),
market_keeps.into(),

),
);

}

However,kick_tokendoesnot respect the lockandmay result in lossof funds forboth theMarketplace
and the users.

mb-legacy-market/src/lib.rs RUST

pub fn kick_tokens(&mut self, token_keys: Vec<String>) {
self.assert_owner_marketplace();
token_keys.into_iter().for_each(|token_key| {

let token = self.get_token(token_key.clone());
let key: TokenKey = token_key.as_str().into();
self.delist_internal(&key, token);

});
}

The sequence of transactions provided below demonstrates a casewhere theMarketplace suffers from
the excessive refund on the original nftA offering (block2.tx1.2), and accountC suffers from losing the
custody (block5.tx1.2) transferred to Marketplacewhile making an offer (block4.tx1).

© 2023 Otter Audits LLC. All Rights Reserved. 10 / 30

Mintbase Audit 04 | Vulnerabilities

block1 tx1 withdraw_offer is called and the offer is accepted (accountA -nftA->accountB).
1. help_transfer is called.
1-1. accountA owned nftA is locked.
1-2. nft_transfer_payout receipt is generated.
1-3. resolve_nft_payout receipt is generated,

block2 tx1 admin calls kick_token on nftA.
1. nftA is removed from Marketplace::listing.
2. accountB is refunded for nftA.
2-1. token.current_offer.price is deducted from Marketplace balance.
2-2. transfer receipt to credit accountB is generated.

tx2 nft_transfer_payout receipt is processed.
1. nftA ownership is assigned to accountB in MintbaseStore.

block3 tx1 transfer receipt generated by kick_token is processed.
tx2 accountB lists nftA on Marketplace.

block4 tx1 accountCmakes offer for nftA.
block5 tx1 resolve_nft_payout receipt is processed.

1. accountBoffer payout is resolved,transfer receipt is generated topayaccountA.
2. nftA listing is removed from Marketplace, accountC loses deposited funds.

block6 tx1 transfer receipt generated by resolve_nft_payout is processed.

For the provided scenario to occur, the resolve_nft_payout receipt must be delayed for two addi-
tional blocks and ready to be processed by block3, but not processed until block5 in order to make time
for accountB to list nftA, and for accountC to make an offer. This delay is unlikely under the current
NEAR environment, where each validator tracks all shards. However, in the future, where each validator
tracks only a proportion of shards, this scenario is possible due to communication delays between nodes.

Notably, the delay of receipt processing is generally not within the control of individual users. Thus, this
bug is more likely to occur by accident rather than by being performed with the intention of an attack.

Remediation

Require kick_token to respect the listing lock.

mb-legacy-market/src/lib.rs DIFF

self.assert_owner_marketplace();
token_keys.into_iter().for_each(|token_key| {

let token = self.get_token(token_key.clone());
+ token.assert_not_locked();

let key: TokenKey = token_key.as_str().into();
self.delist_internal(&key, token);

});

Patch

Resolved in 6cbc645.

© 2023 Otter Audits LLC. All Rights Reserved. 11 / 30

https://github.com/Mintbase/mb-contracts/commit/6cbc645133c2b9c834a38c61a360f1e43c1f774a

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-04 [high] | Remove Offer Does Not Respect Offer Non-Mutability

Description

The interop market enforces listings with offers that should not be tampered with, similar to the concept
of locking in OS-MTB-ADV-03.

mb-interop-market/src/offer.rs RUST

pub fn buy(
&mut self,
nft_contract_id: AccountId,
token_id: String,
referrer_id: Option<AccountId>,
affiliate_id: Option<AccountId>,

) -> Promise {
...
near_assert!(

listing.current_offer.is_none(),
"Another offer currently executes on this listing"

);

// Happy path: insert offer, log event, process stuff
let offer = Offer {

offerer_id: env::predecessor_account_id(),
amount: env::attached_deposit(),
referrer_id: referrer_id.clone(),
referral_cut,

};
...
listing.current_offer = Some(offer);
...

}

However, remove_offer is allowed to bypass the rule andmay result in a loss of funds for market users.

mb-interop-market/src/offer.rs RUST

pub fn remove_offer(
&mut self,
nft_contract_id: AccountId,
token_id: String,

) {
// only owner is allowed to call this
self.assert_predecessor_is_owner();

// fetch listing
let token_key = format!("{}<$>{}", nft_contract_id, token_id);
let listing = self.get_listing_internal(&token_key);
near_assert!(listing.is_some(), "Listing does not exist");
let mut listing = listing.unwrap();
near_assert!(

listing.current_offer.is_some(),
"Listing does not have an offer"

);

// remove offer and store
listing.current_offer = None;
self.listings.insert(&token_key, &listing);

}

The sequence of transactions provided below demonstrates a case where accountAmay never get paid
for the sale of nftA.

© 2023 Otter Audits LLC. All Rights Reserved. 12 / 30

Mintbase Audit 04 | Vulnerabilities

block1 tx1 buy is called (accountA -nftA-> accountB).
1. A new current_offer is added to listing.
2. execute_transfer is called.
2-1. nft_transfer_payout receipt is generated.
2-2. resolve_nft_payout_near receipt is generated.

block2 tx1 admin calls remove_offer on nftA.
1. current_offer is removed from nftA listing.

tx2 nft_transfer_payout receipt is processed.
1. nftA ownership is assigned to accountB in MintbaseStore.

tx3 accountA removed listing of nftA through unlist_single_nft.
block3 tx1 accountB lists nftA on Market.
block4 tx1 accountCmakes offer for nftA through buy.

1. A new current_offer is added to listing.
2. execute_transfer is called.
2-1. nft_transfer_payout receipt is generated.
2-2. resolve_nft_payout_near receipt is generated.

block5 tx1 resolve_nft_payout receipt generated in block1 is processed.
1. current_offer for nftA is removed from nftA listing.
1-1. accountB is paid for this sale while accountA is never paid.

There exist many variations where the bug maymanifest itself. With only the first two blocks, accountA
will suffer from not receiving the payment for the nftA sale. With the remaining three blocks, it is
demonstrated that while unlikely, it is possible for the sequence of listing, buying, and removing offers
to be extended indefinitely. This would result in a delay of explicit transaction failure and create more
difficulties in tracing back to the source of the issue.

Remediation

Mintbase expressed that the ability to forcefully remove current_offer is required to recover from
potential resolve_nft_payout_near / resolve_nft_payout_ft failures.

After taking this requirement into consideration, we suggest the interopmarket admin monitor on-chain
activities and only call remove_transfer on resolve_nft_payout_(near/ft) failures.

Patch

Guidelines for admin actions are documented in 0f5efc2.

© 2023 Otter Audits LLC. All Rights Reserved. 13 / 30

https://github.com/Mintbase/mb-contracts/commit/0f5efc2bc3fb1c2eb9e7ee9dfd06add49edb8849

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-05 [high] | Potential Loss Of NFT Due To Unaccounted Fee

Description

Requiring an attachment of one yNEAR is a commonmethod to ensure that the caller signed the trans-
action with a full access key. While one yNEAR is an infinitely small value, it will potentially lead to
transaction failures if the caller does not have an excessive balance to fund it.

In nft_resolve_payout_ft, if all previous receipts regarding NFT transfers are processed success-
fully, ft_transferwith one yNEAR attached will be called to transfer ft to each recipient.

mb-store/src/core.rs RUST

pub fn nft_resolve_payout_ft(
&mut self,
token_key: String,

) -> PromiseOrValue<U128> {
...
for (account, amount) in payout.drain() {

ft_transfer(ft_contract_id.clone(), account, amount.0);
}
if let Some(referrer_id) = offer.referrer_id {

ft_transfer(ft_contract_id, referrer_id, ref_earning.unwrap());
}
...

}

mb-sdk/src/utils.rs RUST

pub fn ft_transfer(
ft_contract_id: AccountId,
receiver_id: AccountId,
amount: Balance,

) -> Promise {
crate::interfaces::ext_ft::ext(ft_contract_id)

.with_attached_deposit(1)

.with_static_gas(crate::constants::gas::FT_TRANSFER)

.ft_transfer(receiver_id, amount.into(), None)
}

However, since there is no explicit funding for the attached yNEAR, Marketplacemay not have the
funds required, leading to the failure of nft_resolve_payout_ft.

Upon failure of nft_resolve_payout_ft, ft_resolve_transfer should roll back the previous
payment and return all ft to the NFT buyer. On the other hand, nft_transfer_payout changes will
not be rolled back, which leads to the seller losing NFTs without receiving the payment for it.

This scenario is an edge case that may only occur if the admin decides to withdraw all non-storage stake
funds right before the nft_resolve_payout_ft receipt is processed.

The reason for the affected scenario being limited is due to NEAR distributing parts of transaction fees to
contracts as developer incentives, and reception of fees for any single transaction is likely able to cover
the fee amount required for ft_transfer to succeed.

© 2023 Otter Audits LLC. All Rights Reserved. 14 / 30

Mintbase Audit 04 | Vulnerabilities

Remediation

Withhold a part of the refunded storage fee for listing and use it to fund ft_transfer.

mb-interop-market/src/offers.rs DIFF

pub fn nft_resolve_payout_ft(
&mut self,
token_key: String,

) -> PromiseOrValue<U128> {
...
for (account, amount) in payout.drain() {

ft_transfer(ft_contract_id.clone(), account, amount.0);
}
if let Some(referrer_id) = offer.referrer_id {

ft_transfer(ft_contract_id, referrer_id, ref_earning.unwrap());
}

self.listings.remove(&token_key);
- self.refund_listings(&listing.nft_owner_id, 1);
+ // payout length is capped at MAX_LEN_PAYOUT_FT (10)
+ // withholding 11 yNEAR is enough to fund ft_transfer
+ self.decrease_listings_count(&listing.nft_owner_id, 1);
+ self.refund_storage_deposit(
+ account,
+ self.listing_storage_deposit - 11u128,
+);

PromiseOrValue::Value(0.into())
}

Patch

Resolved in 13d0400 and 3eef340.

© 2023 Otter Audits LLC. All Rights Reserved. 15 / 30

https://github.com/Mintbase/mb-contracts/commit/13d0400649844e7ecd0529e223763f56a6627994
https://github.com/Mintbase/mb-contracts/commit/3eef3401f3c366f51d1f22cb40fae96cbd36b55

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-06 [med] | Excessive Approval Renders Functions Unavailable

Description

NEP-178mandates thatnft_approve’s panicwill causenft_revoke_all to fail due to gas exhaust.
This requirement is set for good reason, as a handful of functions may need to iterate approvals, such as
how successful NFT transfers revoke all approvals.

mb-store/src/approvals.rs RUST

pub fn nft_revoke_all(&mut self, token_id: U64) -> Promise {
...

let refund = token.approvals.len() as u128 * self.storage_costs.common;

if !token.approvals.is_empty() {
token.approvals.clear();
self.tokens.insert(&token_idu64, &token);
log_revoke_all(token_idu64);

}
Promise::new(env::predecessor_account_id()).transfer(refund)

}

Its inconsiderationmay result in users temporarily bricking their NFTs by adding toomany approvals. This
would become especially relevant when considering cross-contract calls that provide a static gas budget
regardless of approval length, such as, nft_transfer_payout in help_transfer.

Remediation

Set a reasonable cap on the maximum amount of approvals an NFTmay have. The provided code snippet
below introduces a new constant MAX_NFT_APPROVALS, which must be set properly.

mb-store/src/approvals.rs DIFF

fn approve_internal(
&mut self,
token_idu64: u64,
account_id: &AccountId,

) -> u64 {
...

let approval_id = self.num_approved;
self.num_approved += 1;

+ assert!(self.num_approved <= MAX_NFT_APPROVALS);

token.approvals.insert(account_id.clone(), approval_id);
self.tokens.insert(&token_idu64, &token);
approval_id

Patch

Resolved in 65405c9.

© 2023 Otter Audits LLC. All Rights Reserved. 16 / 30

https://github.com/Mintbase/mb-contracts/commit/65405c944bebc47e4534562ec3891cea39d16d0d

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-07 [med] | Minter Privilege Not Revocable In MintbaseStore

Description

withdraw_minterasserts thata transaction is signedwitha full accesskeybycallingassert_one_yocto.
However, since it is not marked as #[payable], the function does not allow the caller to attach any
yNEAR to the transaction, thus making it impossible to pass the check.

Remediation

Mark withdraw_minter as #[payable].

mb-store/src/minting.rs DIFF

+ #[payable]
pub fn withdraw_minter(&mut self) {

assert_one_yocto();
self.revoke_minter_internal(&env::predecessor_account_id())

}

Patch

Resolved in db7ef02.

© 2023 Otter Audits LLC. All Rights Reserved. 17 / 30

https://github.com/Mintbase/mb-contracts/commit/db7ef028cfc6eae66ad3172b0698375b8f821eb2

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-08 [med] | NFT State Not Restored On Transfer Failure

Description

nft_resolve_transfer should fully rollback the NFT state if the followingnft_on_transfer call
fails or returns true.

The current implementation of nft_resolve_transfer does not properly restore split_owners
and approvals to their original state. Both fields are cleared regardless of the transfer result.

Remediation

Restore token.split_owners and token.approvals if the transfer fails.

mb-store/src/core.rs DIFF

#[payable]
pub fn nft_transfer_call(

&mut self,
receiver_id: AccountId,
token_id: U64,
approval_id: Option<u64>,
msg: String,

) -> Promise {
...

// prevent race condition, temporarily lock-replace owner
let owner_id = AccountId::new_unchecked(token.owner_id.to_string());

+ let approvals = token.approvals.clone();
+ let split_owners = token.split_owners.clone();

self.transfer_internal(&mut token, receiver_id.clone(), true);
log_nft_transfer(

&receiver_id,
token_id_u64,
&None,
owner_id.to_string(),

);
self.lock_token(&mut token);

ext_nft_on_transfer::ext(receiver_id.clone())
.with_static_gas(gas::NFT_TRANSFER_CALL)
.nft_on_transfer(pred, owner_id.clone(), token_id, msg)
.then(

store_self::ext(env::current_account_id())
.with_static_gas(gas::NFT_TRANSFER_CALL)
.nft_resolve_transfer(

owner_id,
receiver_id,
token_id.0.to_string(),
None,

+ approvals,
+ split_owners,

),
)

}

#[private]
pub fn nft_resolve_transfer(

&mut self,
owner_id: AccountId,
receiver_id: AccountId,
token_id: String,
// NOTE: might borsh::maybestd::collections::HashMap be more appropriate?
approved_account_ids: Option<HashMap<AccountId, u64>>,

+ approvals: HashMap<AccountId, u64>,
+ split_owners: Option<SplitOwners>,

© 2023 Otter Audits LLC. All Rights Reserved. 18 / 30

Mintbase Audit 04 | Vulnerabilities

) -> bool {
let l = format!(

- "owner_id={} receiver_id={} token_id={} split_owners={:?} pred={}",
+ "owner_id={} receiver_id={} token_id={} approved_ids={:?} approvals={:?} split_owners={:?} pred={}",

owner_id,
receiver_id,
token_id,
approved_account_ids,

+ approvals,
+ split_owners,

env::predecessor_account_id()
);
...
if !must_revert {

true
} else {

self.transfer_internal(&mut token, owner_id.clone(), true);
+ token.approvals = approvals;
+ token.split_owners = split_owners;

log_nft_transfer(
&owner_id,
token_id_u64,
&None,
receiver_id.to_string(),

);
false

}
}

Patch

Resolved in 189b0bb.

© 2023 Otter Audits LLC. All Rights Reserved. 19 / 30

https://github.com/Mintbase/mb-contracts/commit/189b0bb96373d09f81bd07c8c95611c7d359e543

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-09 [med] | Storage Fee Uncollected When Listing NFTs

Description

nft_on_approve adds NFTs to listings and increases storage usage. Since storage fees are not
collected from the caller, it is possible for an attacker to lock up all funds in Marketplace by repeatedly
approving NFTs to it.

mb-legacy-market/src/listings.rs RUST

pub fn nft_on_approve(
&mut self,
token_id: U64,
owner_id: AccountId,
approval_id: u64,
msg: String, // try to parse into saleArgs

) {
...
let token = self.listing_insert_internal(

token_id,
U64(approval_id),
&owner_id,
&sale_args,

);
...

}

pub(crate) fn listing_insert_internal(
&mut self,
token_id: U64,
approval_id: U64,
owner_id: &AccountId,
sale_args: &mb_sdk::data::market_v1::SaleArgs,

) -> TokenListing {
let approval_id: u64 = approval_id.into();
// Create the tokens. Skip any tokens that are already listed.
let key = TokenKey {

token_id: token_id.0,
account_id: env::predecessor_account_id().to_string(),

};
let token = TokenListing::new(

owner_id.clone(),
env::predecessor_account_id(),
token_id.into(),
approval_id,
sale_args.autotransfer,
sale_args.price,

);
match self.listings.get(&key) {

None => {
self.listings.insert(&key, &token);

}
Some(old_token) => {

// token has been relisted, handle old token data and reinsert.
self.delist_internal(&key, old_token);
self.listings.insert(&key, &token);

}
}
token

}

Remediation

Require approvals to properly fund potential storage usage.

© 2023 Otter Audits LLC. All Rights Reserved. 20 / 30

Mintbase Audit 04 | Vulnerabilities

Patch

Mintbase acknowledged this issue and decided to keep the original implementation for NEP compatibility
reasons. Marketplace will be refunded by Mintbase to account for additional locked storage fees if
necessary.

© 2023 Otter Audits LLC. All Rights Reserved. 21 / 30

Mintbase Audit 04 | Vulnerabilities

OS-MTB-ADV-10 [med] | Updating Token Owner Does Not Charge Caller

Description

When a token is transferred to an account without any NFTs, the receiving account will be added to
tokens_per_owner.

mb-store/src/lib.rs RUST

fn update_tokens_per_owner(
...

) {
...
if let Some(to) = to {

let mut new_owner_owned_set = self.get_or_make_new_owner_set(&to);
new_owner_owned_set.insert(&token_id);
self.tokens_per_owner.insert(&to, &new_owner_owned_set);

}
}

The storage cost for this is not accounted for in update_tokens_per_owner and its callers, thus
allowing attackers to lock up funds by repeatedly transferring NFTs to new accounts.

Remediation

Require NFTminters to fully sponsor storage fees for potential listings.

mb-store/src/minting.rs DIFF

fn storage_cost_to_mint(
...

) -> near_sdk::Balance {
- // create an entry in tokens_per_owner
- self.storage_costs.common
- // create a metadata record
- + metadata_storage as u128 * self.storage_costs.storage_price_per_byte
+ // create a metadata record
+ metadata_storage as u128 * self.storage_costs.storage_price_per_byte

// create a royalty record
+ num_royalties as u128 * self.storage_costs.common
// create n tokens each with splits stored on-token

- + num_tokens as u128 * (self.storage_costs.token + num_splits as u128 * self.storage_costs.common)
+ + num_tokens as u128 * (
+ // token base storage
+ self.storage_costs.token
+ // dynamic split storage
+ + num_splits as u128 * self.storage_costs.common
+ // create an entry in tokens_per_owner
+ + self.storage_costs.common
+)

}

Patch

Resolved in a434371.

© 2023 Otter Audits LLC. All Rights Reserved. 22 / 30

https://github.com/Mintbase/mb-contracts/commit/a434371519f01c0165348f337e13718189dc8d2e

05 | General Findings
Here, we present a discussion of general findings during our audit. While these findings do not present an
immediate security impact, they represent antipatterns and could lead to security issues in the future.

ID Description

OS-MTB-SUG-00 Avoid redundant state checks in #[init] functions to reduce gas usage.

OS-MTB-SUG-01 There are contradictory aspects in the documentation and code.

OS-MTB-SUG-02 Avoidmanual calculation of storage fees as they are fragile and are a common source
of issues that lead to a denial of service.

© 2023 Otter Audits LLC. All Rights Reserved. 23 / 30

Mintbase Audit 05 | General Findings

OS-MTB-SUG-00 | Avoid Redundant State Checks In Init Functions

Description

The #[init]macro includes an implicit check for env::state_exists() to be false, as demon-
strated in the provided code snippet below. Repeating the check in the function body unnecessarily uses
gas.

near-sdk-macros/src/core_impl/code_generator/impl_item_method_info.rs RUST

fn init_method_wrapper(
method_info: &ImplItemMethodInfo,
check_state: bool,

) -> Result<TokenStream2, syn::Error> {
let ImplItemMethodInfo { attr_signature_info, struct_type, .. } = method_info;
let arg_list = attr_signature_info.arg_list();
let AttrSigInfo { ident, returns, is_handles_result, .. } = attr_signature_info;
let state_check = if check_state {

quote! {
if near_sdk::env::state_exists() {

near_sdk::env::panic_str("The contract has already been initialized");
}

}
} else {

quote! {}
};
...

}

Remediation

Remove near_assert!(!env::state_exists(), ...) from #[init] functions.

mb-legacy-market/src/lib.rs DIFF

pub fn new(metadata: NFTContractMetadata, owner_id: AccountId) -> Self {
- near_assert!(
- !env::state_exists(),
- "This store is already initialized!"
-);

let mut minters = UnorderedSet::new(b"a".to_vec());
minters.insert(&owner_id);
...

}

mb-legacy-market/src/lib.rs DIFF

#[init]
pub fn new(init_allowlist: Vec<AccountId>) -> Self {
- near_assert!(!env::state_exists(), "Already initialized");

let mut allowlist = UnorderedSet::new(b"a".to_vec());
...

}

Patch

Resolved in fd8f281, 3e16fd3 and 117c511

© 2023 Otter Audits LLC. All Rights Reserved. 24 / 30

https://github.com/Mintbase/mb-contracts/commit/fd8f2816c2acfc5eaa16c38323aa1b6b4baeed1e
https://github.com/Mintbase/mb-contracts/commit/3e16fd31baeb01e5d2a7007d37d25a06bbf5fde1
https://github.com/Mintbase/mb-contracts/commit/117c51103941c01b11a925197daad62b7b5b0d74

Mintbase Audit 05 | General Findings

OS-MTB-SUG-01 | Contradictory Documentation And Code

Description

1. Rules regarding offer validation in the legacy market:

The documentation on offer-making rules does not match its implementation.

mb-legacy-market/src/offers.rs RUST

impl Marketplace {
/// Make an `Offer` for `Token`. `Offer`s may be created beneath the `Token`'s
/// `asking_price`, but not beneath the `current_offer`'s price, unless the
/// current offer has timed out.
///
/// The `price` argument MUST be >= `env::attached_deposit` on this function.
...

}

mb-legacy-market/src/offers.rs RUST

pub fn make_offer(
&mut self,
token_key: Vec<String>,
price: Vec<U128>,
timeout: Vec<TimeUnit>,

) {
...
let mut total: Balance = 0;
let token_offers = token_key

.into_iter()

.zip(price.into_iter())

.zip(timeout.into_iter())

.map(|((token_key, price), timeout)| {
total += price.0;
...
self.try_make_offer(&mut listing, offer.clone());
...

})
.collect::<Vec<_>>();

near_assert!(
total == env::attached_deposit(),
"Summed prices must match the attached deposit",

);
...

}

fn try_make_offer(&mut self, token: &mut TokenListing, offer: TokenOffer) {
...
near_assert!(

offer.price >= token.asking_price.into(),
"Cannot set offer below ask"

);
...

}

2. Minting limits in MintbaseStore:

The documentation onminting limits does not match its implementation.

© 2023 Otter Audits LLC. All Rights Reserved. 25 / 30

Mintbase Audit 05 | General Findings

mb-store/src/minting.rs RUST

impl MintbaseStore {
...
/// - Because of logging limits, this method may mint at most 99 tokens per call.
/// - 1.0 >= `royalty_f` >= 0.0. `royalty_f` is ignored if `royalty` is `None`.
/// - If a `royalty` is provided, percentages **must** be non-negative and add to one.
/// - The maximum length of the royalty mapping is 50.
///
/// This method is the most significant increase of storage costs on this
/// contract. Minters are expected to manage their own storage costs.
...

}

mb-store/src/minting.rs RUST

#[payable]
pub fn nft_batch_mint(

&mut self,
owner_id: AccountId,
#[allow(unused_mut)] // cargo complains, but it's required
mut metadata: TokenMetadata,
num_to_mint: u64,
royalty_args: Option<RoyaltyArgs>,
split_owners: Option<SplitBetweenUnparsed>,

) -> PromiseOrValue<()> {
near_assert!(num_to_mint > 0, "No tokens to mint");
near_assert!(

num_to_mint <= 125,
"Cannot mint more than 125 tokens due to gas limits"

); // upper gas limit
...
near_assert!(

roy_len + split_len <= MAX_LEN_PAYOUT,
"Number of payout addresses may not exceed {}",
MAX_LEN_PAYOUT

);
...

}

Remediation

Update the documentation and code to avoid confusion.

1. Offer-making rules:

mb-legacy-market/src/offers.rs DIFF

impl Marketplace {
- /// Make an `Offer` for `Token`. `Offer`s may be created beneath the `Token`'s
- /// `asking_price`, but not beneath the `current_offer`'s price, unless the
- /// current offer has timed out.
- ///
- /// The `price` argument MUST be >= `env::attached_deposit` on this function.
+ /// Make an `Offer` for `Token`. If the token is listed as simple sale (aka
+ /// "buy now", `autotransfer` is `true`), the offer price may not be below the
+ /// asking price, If the token is listed as rolling auction (`autotransfer` is
+ /// `false`), you may place an offer below the asking price.
+ ///
+ /// The `price` argument MUST be <= `env::attached_deposit` on this function.

...
}

© 2023 Otter Audits LLC. All Rights Reserved. 26 / 30

Mintbase Audit 05 | General Findings

mb-legacy-market/src/offers.rs DIFF

fn try_make_offer(&mut self, token: &mut TokenListing, offer: TokenOffer) {
...
near_assert!(

- offer.price >= token.asking_price.into(),
- "Cannot set offer below ask"
+ !token.autotransfer || offer.price >= token.asking_price.into(),
+ "Cannot set offer below ask for simple sales"

);
...

}

2. Minting limits:

mb-store/src/minting.rs DIFF

impl MintbaseStore {
...

- /// - Because of logging limits, this method may mint at most 99 tokens per call.
+ /// - Because of logging limits, this method may mint at most 125 tokens per call.

/// - 1.0 >= `royalty_f` >= 0.0. `royalty_f` is ignored if `royalty` is `None`.
/// - If a `royalty` is provided, percentages **must** be non-negative and add to one.

- /// - The maximum length of the royalty mapping is 50.
+ /// - The maximum length of the royalty mapping is MAX_LEN_PAYOUT - 1.

///
/// This method is the most significant increase of storage costs on this
/// contract. Minters are expected to manage their own storage costs.
...

}

Patch

Resolved in 0c1249e and c86ba6a.

© 2023 Otter Audits LLC. All Rights Reserved. 27 / 30

https://github.com/Mintbase/mb-contracts/commit/0c1249e3a00333621a4fa63383a15b368608589e
https://github.com/Mintbase/mb-contracts/commit/c86ba6aa2f90ec4d5490ea8b8baf7725842786a1

Mintbase Audit 05 | General Findings

OS-MTB-SUG-02 | Avoid Manual Calculation Of Storage Fees

Description

In the NEAR ecosystem, locked storage fees are sponsored by the contract rather than the callers. This
creates a unique attack surface where if attackers have the ability to increase storage usage of contracts
without paying for it, contract funds may eventually become locked.

To prevent this kind of attack, contracts must carefully consider potential changes in storage usage and
charge users accordingly through attached assets.

Mintbase manages storage fees through pre-calculated structure sizes, admin-assigned storage fees per
byte, and tracking the addition and removal of storage manually.

Miscalculated and unaccounted storage usage and potential future issues are listed below.

• Storage fees are not guaranteed to stay constant. Admins are required to promptly update contracts
or set storage_price_per_byte on any future NEAR environment changes.

• Tracking all possible storage consumption changes is difficult, and any future updates to the contract
code would require developers to re-assess storage usage logic.

Remediation

We recommend NEAR developers call env::storage_usage twice, once upon entering the contract,
and once when leaving the contract. Then, take the difference as storage delta andmultiply this value by
env::storage_byte_cost to obtain the storage fee that the caller must pay.

Patch

Mintbase acknowledged our recommendation and decided to keep the original implementation to ensure
API fees are constant and predictable for SDK.

© 2023 Otter Audits LLC. All Rights Reserved. 28 / 30

A | Vulnerability Rating Scale
Weratedour findingsaccording to the following scale. Vulnerabilitieshave immediate security implications.
Informational findings can be found in the General Findings section.

Critical Vulnerabilities that immediately lead to loss of user fundswithminimal preconditions

Examples:

• Misconfigured authority or access control validation
• Improperly designed economic incentives leading to loss of funds

High Vulnerabilities that could lead to loss of user funds but are potentially difficult to
exploit.

Examples:

• Loss of funds requiring specific victim interactions
• Exploitation involving high capital requirement with respect to payout

Medium Vulnerabilities that could lead to denial of service scenarios or degraded usability.

Examples:

• Malicious input that causes computational limit exhaustion
• Forced exceptions in normal user flow

Low Lowprobability vulnerabilitieswhich could still be exploitable but require extenuating
circumstances or undue risk.

Examples:

• Oracle manipulation with large capital requirements andmultiple transactions

Informational Best practices tomitigate future security risks. These are classified as general findings.

Examples:

• Explicit assertion of critical internal invariants
• Improved input validation

© 2023 Otter Audits LLC. All Rights Reserved. 29 / 30

B | Procedure
As part of our standard auditing procedure, we split our analysis into two main sections: design and
implementation.

When auditing the design of a program, we aim to ensure that the overall economic architecture is sound
in the context of an on-chain program. In other words, there is no way to steal funds or deny service,
ignoring any chain-specific quirks. This usually requires a deep understanding of the program’s internal
interactions, potential game theory implications, and general on-chain execution primitives.

One example of a design vulnerability would be an on-chain oracle that could bemanipulated by flash
loans or large deposits. Such a design would generally be unsound regardless of which chain the oracle is
deployed on.

On the other hand, auditing the implementation of the program requires a deep understanding of the
chain’s executionmodel. While this varies from chain to chain, some common implementation vulnerabil-
ities include reentrancy, account ownership issues, arithmetic overflows, and rounding bugs.

As a general rule of sum, implementation vulnerabilities tend to be more “checklist” style. In contrast,
design vulnerabilities require a strongunderstandingof theunderlying systemand the various interactions:
both with the user and cross-program.

As we approach any new target, we strive to get a comprehensive understanding of the program first. In
our audits, we always approach targets with a team of auditors. This allows us to share thoughts and
collaborate, picking up on details that the other missed.

While sometimes the line between design and implementation can be blurry, we hope this gives some
insight into our auditing procedure and thought process.

© 2023 Otter Audits LLC. All Rights Reserved. 30 / 30

	Executive Summary
	Overview
	Key Findings

	Scope
	Findings
	Vulnerabilities
	OS-MTB-ADV-00 [crit] | NFT Not Transferred In Transfer With Call
	OS-MTB-ADV-01 [crit] | NFT Not Returned On Transfer Failure
	OS-MTB-ADV-02 [crit] | MintbaseStore Funds Drainage Through Revoke
	OS-MTB-ADV-03 [high] | Kick Token Does Not Respect Listing Lock
	OS-MTB-ADV-04 [high] | Remove Offer Does Not Respect Offer Non-Mutability
	OS-MTB-ADV-05 [high] | Potential Loss Of NFT Due To Unaccounted Fee
	OS-MTB-ADV-06 [med] | Excessive Approval Renders Functions Unavailable
	OS-MTB-ADV-07 [med] | Minter Privilege Not Revocable In MintbaseStore
	OS-MTB-ADV-08 [med] | NFT State Not Restored On Transfer Failure
	OS-MTB-ADV-09 [med] | Storage Fee Uncollected When Listing NFTs
	OS-MTB-ADV-10 [med] | Updating Token Owner Does Not Charge Caller

	General Findings
	OS-MTB-SUG-00 | Avoid Redundant State Checks In Init Functions
	OS-MTB-SUG-01 | Contradictory Documentation And Code
	OS-MTB-SUG-02 | Avoid Manual Calculation Of Storage Fees

	Appendices
	Vulnerability Rating Scale
	Procedure

